
SMPE: Stock Market Prediction on Edge 
Bryan Chan ,  Zi Yi Chen, Qi Zhao 

University of Toronto 
 

ABSTRACT 
Stock market predictions are usually done on the cloud         
nowadays, but stock prices fluctuate frequently. Price       
changes can occur within a second. Hence, market traders         
often cannot get the up-to-date price predictions in time due          
to high latency between the computation node and the user.          
In this paper, we attempt to reduce the latency by leveraging           
the edge computing technology, offloading the prediction       
computation process on the edge server instead of the cloud.          
We built a simple mobile-edge-cloud system, and our        
evaluations show that with the use of edge nodes, we can           
reduce the latency between the cloud and the mobile users          
by more than 35%. Our method also reduces the mobile          
device’s bandwidth usage significantly, making it much       
more scalable. 
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1. INTRODUCTION 

Stock market prediction is the act of determining the future          
value of public stocks or other financial instruments traded         
on an exchange [17]. Successful predictions of stocks’        
future prices can yield great  profit. 
 
Traditional prediction methods are time consuming and they        
involve large data sets. The methods include fundamental        
analysis and technical analysis [18]. Fundamental analysis       
evaluates a company's past performance as well as the         
credibility of its accounts and it only focuses on the          
company’s stock itself. However, technical analysis is not        
concerned with any of the company's fundamentals. It tries         
to determine the future price of a stock based solely on the            
trends of the past price [18]. Aside from these two          
traditional prediction methods, with the advent of the digital         
computer, stock market prediction has since moved into the         
machine learning era. Recurrent neural network (RNN) is        
widely used for stock market prediction, and it usually         
performs better than the traditional methods [18]. 
 
However, training and testing a neural network for stock         
market prediction are time consuming processes. Training       
requires days of computations and inference requires       
seconds of computations due the complexity of the neural         
networks. Hence, predictions are done on the cloud [19]. 
 

This fact conflicts with market traders needing to get price          
predictions in real time. Also, there is a huge connection          
latency between the cloud and market traders, which        
increases the difficulty to obtain the predictions in time.         
Market traders nowadays tend to take advantages of mobile         
devices to make purchase decisions [20]  but the latency         
between the cloud and the mobiles over WAN are much          
higher compared to over LAN [25]. Hence, low latency         
between mobile and cloud plays a significant role in traders          
making deals in time. 
 
We attempt to take advantage of edge computing and build a           
simple mobile-edge-cloud system. We propose to offload       
the prediction computations onto the edge and establish a         
faster connection between the mobile device and the edge         
through a closer geographic proximity. In addition, this        
architecture also has other potential benefits such as energy         
consumption and lower bandwidth usage. 
 
The rest of this paper is organized as follows. In section 2, 
we provide some required background information related       
to stock market prediction on the edge (SMPE). In section 3,           
we explain the design and architecture of our system,         
followed by evaluations in section 4. In section 5, we          
present our conclusions and some future work. 
 

2. RELATED WORK 
In this section, we will present some background knowledge         
on edge computing and time series analysis. 
 
2.1 Edge Computing 
Edge computing is a distributed computing paradigm in        
which computation is largely or completely performed on        
distributed device nodes known as smart devices or edge         
devices as opposed to primarily taking place in a centralized          
cloud environment [21]. The motivation is to provide server         
resources and data analysis closer to the sources of data,          
promising to deliver shorter latency and higher bandwidth.        
It can benefit applications which require high bandwidth,        
low latency but without large scale aggregation [22]. In         
stock market prediction, on one hand, mobile users want to          
get prediction prices as soon as possible. On the other hand,           
the historical data is huge and latency between the cloud and           
the mobile devices are high. Therefore, we think it is useful           
to leverage edge computing into stock market prediction. 
 



2.2 Time Series Analysis 
Time series analysis is a statistical technique that deals with          
time series data, or trend analysis [23]. With time series          
analysis, we can obtain an understanding of the underlying         
forces and structure that produced the observed data,        
allowing analysts to fit models and proceed to forecasting,         
monitoring, or feedback and feedforward control [24]. As        
mentioned previously, we use an RNN, specifically a        
Long-Short Term Memory model (LSTM) to train a        
prediction model, which is a common method in time series          
analysis. 
 
A LSTM model is an RNN composed of LSTM units. A           
common LSTM unit is composed of a cell, an input gate, an            
output gate and a forget gate. The cell remembers values          
over arbitrary time intervals and the three gates regulate the          
flow of information into and out of the cell. LSTM was           
proposed in 1997 by Sepp Hochreiter and Jürgen        
Schmidhuber [26] and improved in 2000 by Felix Gers'         
team [27]. As of 2016, major technology companies        
including Google, Apple, and Microsoft were using LSTM        
as fundamental components in new products. 
 

3. DESIGN & ARCHITECTURE 
In this section, we describe three scenarios where the         
predictions will most likely occur, and present a network         
topology that follows the scenarios. Additionally, we       
provide a description of the prediction model used in order          
to reflect some issues described in Section 1. At last, we           
provide a high level overview of the system. 
 
3.1 Scenarios 
Three scenarios are compared in Section 4. Traditionally,        
computations are performed on either cloud or mobile        
devices. Both scenarios have their respective advantages       
and disadvantages. Depending on the application usage,       
developers must decide which device to perform the        
computations in order to minimize their specified loss. To         
reduce such burden from the developers, we propose a third          
scenario where we use an edge node to mitigate the          
disadvantages in former scenarios, while preserving the       
advantages and providing flexibility and functionalities. 
 
3.1.1 Cloud 
Many deep neural network applications such as Google        
Translate, Siri, Alexa, Carat, and SnapChat offload the        
computations to the cloud when connectivity can be        
established. In this scenario, the prediction model is stored         
on the cloud and the mobile device will rely on the cloud to             
perform the prediction. This situation allows the model to         
have higher complexity since cloud provides “unlimited”       
computation resources [2]. An extra benefit of using cloud         
is the ability to reduce the bandwidth required to perform          

predictions. Based on [3, 4, 5], removing the heavy         
computations on the mobile device should increase the        
battery life. However, due to the geographic proximity        
between the users and cloud, the latency will be high [6, 7,            
8]. As mentioned in Section 1, high latency imposes a big           
challenge where day traders require near real-time       
predictions to make split-second decisions. We expect the        
latency between the cloud and mobile device to be the          
overhead, thereby disallowing day traders to retrieve       
real-time predictions. 
 
3.1.2 Mobile Device 
On the other hand, without connectivity with the cloud,         
applications mentioned before workaround the heavy      
computation by caching a simpler neural network model on         
the mobile device [9]. Moreover, some applications such as         
Prisma manage to use deep neural network without        
offloading computations. In this scenario, the prediction       
model is stored and utilized for inference on the mobile          
device. This mitigates the latency problem in the cloud         
scenario where there is a delay between the phone and the           
cloud. However, power consumption will increase as heavy        
computations are performed on the mobile device.       
Additionally, the inputs for inference will be directly        
retrieved from data sources and this may impose a high          
bandwidth requirement. We expect the prediction latency to        
be the overhead in this scenario, in addition to increasing          
energy consumption. This would impose challenges where       
day traders need to carry battery chargers and potentially         
suffer from the prediction delay. 
 
Another challenge arises where the prediction model needs        
to be less complex without sacrificing prediction accuracy.        
Although accuracy is not the scope of this paper, it is           
important for real-life use cases. The simpler model would         
either sacrifice the accuracy or require massive development        
time from developers to preserve the accuracy. Recent        
researches are looking into bringing deep neural networks        
into mobile devices [10, 11]. 
 
3.1.3 Edge 
Both previous scenarios suffer from the latency problem.        
The mobile device scenario may suffer from other aspects         
such as power consumption and high bandwidth usage. We         
thereby propose the usage of edge to bring a stronger          
computational device closer to mobile devices. Utilizing the        
edge would maintain the benefits of cloud and reduce the          
latency problem. In this scenario, we assume an edge node          
to be the Wi-Fi access point of the mobile device.          
Additionally, we assume that the edge node has better         
hardware than the mobile devices. An example of an edge          
node can be a laptop with Wi-Fi hotspot. The prediction          
model will then be stored on the edge node and will be            
utilized for inference. 



With a lower geographic proximity, we expect the latency         
between the edge and mobile devices to be lower than the           
cloud scenario. Moreover, the bandwidth will be similar. On         
the other hand, the energy consumption of the mobile         
devices and bandwidth should be lower compared to the         
mobile device scenario. This scenario should benefit day        
traders as they can now receive real-time prediction and         
saving battery life during commute. 
 
3.2 Network Topology 
To realize the scenarios in Section 3.1, we constructed a          
realistic network topology to imitate real-life situations (See        
Figure 1). All scenarios will have the mobile device connect          
to a Wi-Fi access point. For simplicity, we assume the          
access point to be a laptop providing hotspot. The edge will           
then have a wired connection to the cloud and the API for            
retrieving the data inputs. In the cloud scenario, the user          
invokes a request. The packets then traverse through the         
edge and to the cloud. The cloud retrieves information from          
the stock price API and performs the inference. The result is           
then returned through the same path in the opposite         
direction. In the edge and mobile device scenarios, the user          
invokes a request. The packet will traverse to the edge. The           
edge retrieves the information from the API. The result is          
then returned to the mobile device. If the current scenario is           
edge, the inference is done prior to returning. Otherwise, the          
result is simply the API information and inference is done          
on the mobile device. 
 

 
Figure 1: This network topology represents the three        
scenarios in Section 3.1 
 
3.3 Prediction Model 
As mentioned in Section 2, LSTM models are the state of           
the art for time series analysis. Since we want to compare           
the mobile device scenario, we only constructed a deep         
neural net model lightweight enough to be used by the          
mobile device. Realistically, the model should consist of        
more complex layers with different functionalities such as        
Attention and Temporal Convolution [12, 13, 14]. 

Our model is a three-layered LSTM, followed by a fully          
connected layer (See Figure 2). The input is 100 consecutive          
seconds of historical data of a given symbol. Each point          
consists of features: open, close, high, and low. The LSTM          
layers consist of 128, 256, and 512 hidden units,         
respectively. It then uses a fully connected layer to return a           
float, representing the closing price 10 seconds after the last          
input time. The gap can be modified depending on the          
developer. 
 

 
Figure 2: The LSTM model used for stock market         
prediction. The output is the closing price of 10 seconds          
after the last input date 
 
3.4 System Implementation 
We built a prototype to emulate the scenarios. The LSTM          
model is built using TensorFlow and is trained offline. This          
model will be used across all scenarios to keep consistency.          
We chose Alpha Vantage [1] for our API as it is free. We             
built a Python Flask RESTful service and dockerized the         
web service for faster deployment [15, 16]. For        
convenience, we developed an Android application using       
Xamarin framework to simulate all three scenarios. It        
provides an interface for users to see the latency breakdown          
by invoking a request, as well as the prediction result. We           
picked Microsoft Azure as our cloud platform as it provides          
competitive hardware with free of charge. Section 4 will         
provide more details on the setup: physical locations of the          
nodes, hardware used, and the results from the Android         
application. 
 

4. EVALUATION 
In this section we first give an overview of our execution           
environment including hardware specifications, then we      
present our findings of this architecture with latency and         
bandwidth analyses. 
 
4.1 Execution Environment 
We used the Asus laptop with Intel Core i7 with four cores            
and 8GB RAM as our edge server for the experiment. To           



make the playing field even, we also used 4 cores and 8GM            
RAM on our Microsoft Azure cloud node. For the mobile          
device, we used an android mobile phone with Snapdragon         
625 processor and 3GB RAM.  
 
4.2 Overall Latency 
To measure the overall latency, we performed 20 prediction         
trials with each of the three different scenarios and took the           
average and standard deviation. Our results are shown in         
Figure 3. Predictions on cloud, mobile device, and edge         
resulted average latencies of 2145 ms, 4258 ms, and 1378          
ms respectively. These numbers show that our edge server         
has reduced the latency by 67% compared to prediction on          
mobile phone and 36% compared to prediction on the cloud. 
 

Figure 3: Average total latency and standard deviation        
over three scenarios.  Results are in milliseconds 
 
4.3 Latency Analysis 
To further analyze how the edge server help reduced the          
latency, we splitted our total latency numbers into three         
components and analyze where the bottleneck occured in        
our scenarios. The stock API latency is the time it took to            
retrieve the 100 historical prices from the stock price API.          
The prediction latency is the time it took to compute the           
stock prediction. Lastly, the communication latency is the        
time it took to transmit the prediction from the compute          
node to the mobile device. As expected, Figure 4 shows our           
mobile device had the highest stock API latency and         
prediction latency with its slow Wi-Fi connection and        
processor speed, but it had the lowest communication        
latency since the prediction was computed on the mobile         
device itself. The stock API and prediction latencies are         
similar between the edge and the cloud servers due to their           
similar hardware specifications. However, the edge server       
managed to have a lower communication latency compared        
to the cloud server by being physical at the edge of the            
network and closer to the mobile client.  
 

4.4 Bandwidth Analysis 
Computing prediction on the mobile device will incur        
significant bandwidth consumption as the file size of the         
100 historical prices from the stock API is 240KB. Stock          
traders often track hundreds of different stocks       
simultaneously, which will consume bandwidth in the order        
of megabytes per second. When predictions are computed        
on the edge or the cloud, the mobile device only consumes           
approximately 100 bytes of bandwidth per stock by getting         
only the predicted prices.  

 
Figure 4: Latency analysis by splitting total latency into         
stock API latency, prediction latency, and      
communication latency.  Results are in milliseconds 
 

 
Figure 5: Bandwidth analysis on the response sizes from 
three scenarios. Results are in KB 
 

5. CONCLUSION & FUTURE WORK 
Stock market prediction on edge (SMPE) is an architecture         
that computes the stock price predictions on the edge server.          
Our prediction model uses LSTM and takes 100 historical         
prices as the input to the model. The prediction algorithm is           
deployed onto cloud and edge servers’ Docker containers.        
We performed experiments on computing predictions on the        



mobile device, cloud server and edge servers to show that          
edge server can reduce latency and bandwidth consumption. 
 
In the future, we plan to explore the stream data processing           
where users can get real-time update & prediction with the          
app open. We also intend to experiment with different         
prediction models to improve the accuracy of our prediction         
results. 
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