
SMPE: Stock Market Prediction on Edge
Bryan Chan , Zi Yi Chen, Qi Zhao

University of Toronto

ABSTRACT
Stock market predictions are usually done on the cloud
nowadays, but stock prices fluctuate frequently. Price
changes can occur within a second. Hence, market traders
often cannot get the up-to-date price predictions in time due
to high latency between the computation node and the user.
In this paper, we attempt to reduce the latency by leveraging
the edge computing technology, offloading the prediction
computation process on the edge server instead of the cloud.
We built a simple mobile-edge-cloud system, and our
evaluations show that with the use of edge nodes, we can
reduce the latency between the cloud and the mobile users
by more than 35%. Our method also reduces the mobile
device’s bandwidth usage significantly, making it much
more scalable.

KEY WORDS: Edge computing; Latency; Cloud; Stock
Market Prediction; Bandwidth

1. INTRODUCTION

Stock market prediction is the act of determining the future
value of public stocks or other financial instruments traded
on an exchange [17]. Successful predictions of stocks’
future prices can yield great profit.

Traditional prediction methods are time consuming and they
involve large data sets. The methods include fundamental
analysis and technical analysis [18]. Fundamental analysis
evaluates a company's past performance as well as the
credibility of its accounts and it only focuses on the
company’s stock itself. However, technical analysis is not
concerned with any of the company's fundamentals. It tries
to determine the future price of a stock based solely on the
trends of the past price [18]. Aside from these two
traditional prediction methods, with the advent of the digital
computer, stock market prediction has since moved into the
machine learning era. Recurrent neural network (RNN) is
widely used for stock market prediction, and it usually
performs better than the traditional methods [18].

However, training and testing a neural network for stock
market prediction are time consuming processes. Training
requires days of computations and inference requires
seconds of computations due the complexity of the neural
networks. Hence, predictions are done on the cloud [19].

This fact conflicts with market traders needing to get price
predictions in real time. Also, there is a huge connection
latency between the cloud and market traders, which
increases the difficulty to obtain the predictions in time.
Market traders nowadays tend to take advantages of mobile
devices to make purchase decisions [20] but the latency
between the cloud and the mobiles over WAN are much
higher compared to over LAN [25]. Hence, low latency
between mobile and cloud plays a significant role in traders
making deals in time.

We attempt to take advantage of edge computing and build a
simple mobile-edge-cloud system. We propose to offload
the prediction computations onto the edge and establish a
faster connection between the mobile device and the edge
through a closer geographic proximity. In addition, this
architecture also has other potential benefits such as energy
consumption and lower bandwidth usage.

The rest of this paper is organized as follows. In section 2,
we provide some required background information related
to stock market prediction on the edge (SMPE). In section 3,
we explain the design and architecture of our system,
followed by evaluations in section 4. In section 5, we
present our conclusions and some future work.

2. RELATED WORK
In this section, we will present some background knowledge
on edge computing and time series analysis.

2.1 Edge Computing
Edge computing is a distributed computing paradigm in
which computation is largely or completely performed on
distributed device nodes known as smart devices or edge
devices as opposed to primarily taking place in a centralized
cloud environment [21]. The motivation is to provide server
resources and data analysis closer to the sources of data,
promising to deliver shorter latency and higher bandwidth.
It can benefit applications which require high bandwidth,
low latency but without large scale aggregation [22]. In
stock market prediction, on one hand, mobile users want to
get prediction prices as soon as possible. On the other hand,
the historical data is huge and latency between the cloud and
the mobile devices are high. Therefore, we think it is useful
to leverage edge computing into stock market prediction.

2.2 Time Series Analysis
Time series analysis is a statistical technique that deals with
time series data, or trend analysis [23]. With time series
analysis, we can obtain an understanding of the underlying
forces and structure that produced the observed data,
allowing analysts to fit models and proceed to forecasting,
monitoring, or feedback and feedforward control [24]. As
mentioned previously, we use an RNN, specifically a
Long-Short Term Memory model (LSTM) to train a
prediction model, which is a common method in time series
analysis.

A LSTM model is an RNN composed of LSTM units. A
common LSTM unit is composed of a cell, an input gate, an
output gate and a forget gate. The cell remembers values
over arbitrary time intervals and the three gates regulate the
flow of information into and out of the cell. LSTM was
proposed in 1997 by Sepp Hochreiter and Jürgen
Schmidhuber [26] and improved in 2000 by Felix Gers'
team [27]. As of 2016, major technology companies
including Google, Apple, and Microsoft were using LSTM
as fundamental components in new products.

3. DESIGN & ARCHITECTURE
In this section, we describe three scenarios where the
predictions will most likely occur, and present a network
topology that follows the scenarios. Additionally, we
provide a description of the prediction model used in order
to reflect some issues described in Section 1. At last, we
provide a high level overview of the system.

3.1 Scenarios
Three scenarios are compared in Section 4. Traditionally,
computations are performed on either cloud or mobile
devices. Both scenarios have their respective advantages
and disadvantages. Depending on the application usage,
developers must decide which device to perform the
computations in order to minimize their specified loss. To
reduce such burden from the developers, we propose a third
scenario where we use an edge node to mitigate the
disadvantages in former scenarios, while preserving the
advantages and providing flexibility and functionalities.

3.1.1 Cloud
Many deep neural network applications such as Google
Translate, Siri, Alexa, Carat, and SnapChat offload the
computations to the cloud when connectivity can be
established. In this scenario, the prediction model is stored
on the cloud and the mobile device will rely on the cloud to
perform the prediction. This situation allows the model to
have higher complexity since cloud provides “unlimited”
computation resources [2]. An extra benefit of using cloud
is the ability to reduce the bandwidth required to perform

predictions. Based on [3, 4, 5], removing the heavy
computations on the mobile device should increase the
battery life. However, due to the geographic proximity
between the users and cloud, the latency will be high [6, 7,
8]. As mentioned in Section 1, high latency imposes a big
challenge where day traders require near real-time
predictions to make split-second decisions. We expect the
latency between the cloud and mobile device to be the
overhead, thereby disallowing day traders to retrieve
real-time predictions.

3.1.2 Mobile Device
On the other hand, without connectivity with the cloud,
applications mentioned before workaround the heavy
computation by caching a simpler neural network model on
the mobile device [9]. Moreover, some applications such as
Prisma manage to use deep neural network without
offloading computations. In this scenario, the prediction
model is stored and utilized for inference on the mobile
device. This mitigates the latency problem in the cloud
scenario where there is a delay between the phone and the
cloud. However, power consumption will increase as heavy
computations are performed on the mobile device.
Additionally, the inputs for inference will be directly
retrieved from data sources and this may impose a high
bandwidth requirement. We expect the prediction latency to
be the overhead in this scenario, in addition to increasing
energy consumption. This would impose challenges where
day traders need to carry battery chargers and potentially
suffer from the prediction delay.

Another challenge arises where the prediction model needs
to be less complex without sacrificing prediction accuracy.
Although accuracy is not the scope of this paper, it is
important for real-life use cases. The simpler model would
either sacrifice the accuracy or require massive development
time from developers to preserve the accuracy. Recent
researches are looking into bringing deep neural networks
into mobile devices [10, 11].

3.1.3 Edge
Both previous scenarios suffer from the latency problem.
The mobile device scenario may suffer from other aspects
such as power consumption and high bandwidth usage. We
thereby propose the usage of edge to bring a stronger
computational device closer to mobile devices. Utilizing the
edge would maintain the benefits of cloud and reduce the
latency problem. In this scenario, we assume an edge node
to be the Wi-Fi access point of the mobile device.
Additionally, we assume that the edge node has better
hardware than the mobile devices. An example of an edge
node can be a laptop with Wi-Fi hotspot. The prediction
model will then be stored on the edge node and will be
utilized for inference.

With a lower geographic proximity, we expect the latency
between the edge and mobile devices to be lower than the
cloud scenario. Moreover, the bandwidth will be similar. On
the other hand, the energy consumption of the mobile
devices and bandwidth should be lower compared to the
mobile device scenario. This scenario should benefit day
traders as they can now receive real-time prediction and
saving battery life during commute.

3.2 Network Topology
To realize the scenarios in Section 3.1, we constructed a
realistic network topology to imitate real-life situations (See
Figure 1). All scenarios will have the mobile device connect
to a Wi-Fi access point. For simplicity, we assume the
access point to be a laptop providing hotspot. The edge will
then have a wired connection to the cloud and the API for
retrieving the data inputs. In the cloud scenario, the user
invokes a request. The packets then traverse through the
edge and to the cloud. The cloud retrieves information from
the stock price API and performs the inference. The result is
then returned through the same path in the opposite
direction. In the edge and mobile device scenarios, the user
invokes a request. The packet will traverse to the edge. The
edge retrieves the information from the API. The result is
then returned to the mobile device. If the current scenario is
edge, the inference is done prior to returning. Otherwise, the
result is simply the API information and inference is done
on the mobile device.

Figure 1: This network topology represents the three
scenarios in Section 3.1

3.3 Prediction Model
As mentioned in Section 2, LSTM models are the state of
the art for time series analysis. Since we want to compare
the mobile device scenario, we only constructed a deep
neural net model lightweight enough to be used by the
mobile device. Realistically, the model should consist of
more complex layers with different functionalities such as
Attention and Temporal Convolution [12, 13, 14].

Our model is a three-layered LSTM, followed by a fully
connected layer (See Figure 2). The input is 100 consecutive
seconds of historical data of a given symbol. Each point
consists of features: open, close, high, and low. The LSTM
layers consist of 128, 256, and 512 hidden units,
respectively. It then uses a fully connected layer to return a
float, representing the closing price 10 seconds after the last
input time. The gap can be modified depending on the
developer.

Figure 2: The LSTM model used for stock market
prediction. The output is the closing price of 10 seconds
after the last input date

3.4 System Implementation
We built a prototype to emulate the scenarios. The LSTM
model is built using TensorFlow and is trained offline. This
model will be used across all scenarios to keep consistency.
We chose Alpha Vantage [1] for our API as it is free. We
built a Python Flask RESTful service and dockerized the
web service for faster deployment [15, 16]. For
convenience, we developed an Android application using
Xamarin framework to simulate all three scenarios. It
provides an interface for users to see the latency breakdown
by invoking a request, as well as the prediction result. We
picked Microsoft Azure as our cloud platform as it provides
competitive hardware with free of charge. Section 4 will
provide more details on the setup: physical locations of the
nodes, hardware used, and the results from the Android
application.

4. EVALUATION
In this section we first give an overview of our execution
environment including hardware specifications, then we
present our findings of this architecture with latency and
bandwidth analyses.

4.1 Execution Environment
We used the Asus laptop with Intel Core i7 with four cores
and 8GB RAM as our edge server for the experiment. To

make the playing field even, we also used 4 cores and 8GM
RAM on our Microsoft Azure cloud node. For the mobile
device, we used an android mobile phone with Snapdragon
625 processor and 3GB RAM.

4.2 Overall Latency
To measure the overall latency, we performed 20 prediction
trials with each of the three different scenarios and took the
average and standard deviation. Our results are shown in
Figure 3. Predictions on cloud, mobile device, and edge
resulted average latencies of 2145 ms, 4258 ms, and 1378
ms respectively. These numbers show that our edge server
has reduced the latency by 67% compared to prediction on
mobile phone and 36% compared to prediction on the cloud.

Figure 3: Average total latency and standard deviation
over three scenarios. Results are in milliseconds

4.3 Latency Analysis
To further analyze how the edge server help reduced the
latency, we splitted our total latency numbers into three
components and analyze where the bottleneck occured in
our scenarios. The stock API latency is the time it took to
retrieve the 100 historical prices from the stock price API.
The prediction latency is the time it took to compute the
stock prediction. Lastly, the communication latency is the
time it took to transmit the prediction from the compute
node to the mobile device. As expected, Figure 4 shows our
mobile device had the highest stock API latency and
prediction latency with its slow Wi-Fi connection and
processor speed, but it had the lowest communication
latency since the prediction was computed on the mobile
device itself. The stock API and prediction latencies are
similar between the edge and the cloud servers due to their
similar hardware specifications. However, the edge server
managed to have a lower communication latency compared
to the cloud server by being physical at the edge of the
network and closer to the mobile client.

4.4 Bandwidth Analysis
Computing prediction on the mobile device will incur
significant bandwidth consumption as the file size of the
100 historical prices from the stock API is 240KB. Stock
traders often track hundreds of different stocks
simultaneously, which will consume bandwidth in the order
of megabytes per second. When predictions are computed
on the edge or the cloud, the mobile device only consumes
approximately 100 bytes of bandwidth per stock by getting
only the predicted prices.

Figure 4: Latency analysis by splitting total latency into
stock API latency, prediction latency, and
communication latency. Results are in milliseconds

Figure 5: Bandwidth analysis on the response sizes from
three scenarios. Results are in KB

5. CONCLUSION & FUTURE WORK
Stock market prediction on edge (SMPE) is an architecture
that computes the stock price predictions on the edge server.
Our prediction model uses LSTM and takes 100 historical
prices as the input to the model. The prediction algorithm is
deployed onto cloud and edge servers’ Docker containers.
We performed experiments on computing predictions on the

mobile device, cloud server and edge servers to show that
edge server can reduce latency and bandwidth consumption.

In the future, we plan to explore the stream data processing
where users can get real-time update & prediction with the
app open. We also intend to experiment with different
prediction models to improve the accuracy of our prediction
results.

REFERENCE
[1] “ALPHA VANTAGE” www.alphavantage.co/.
[2] Fox, Armando, et al. "Above the Clouds: A Berkeley
View of Cloud Computing." Dept. Electrical Eng. and
Comput. Sciences, University of California, Berkeley, Rep.
UCB/EECS 28.13 (2009): 2009.
[3] Ha, Kiryong, et al. "Towards Wearable Cognitive
Assistance." Proceedings of the 12th annual international
conference on Mobile systems, applications, and services.
ACM, 2014.
[4] Li, Dawei, et al. "Deepcham: Collaborative
Edge-Mediated Adaptive Deep Learning for Mobile Object
Recognition." Edge Computing (SEC), IEEE/ACM
Symposium on. IEEE, 2016.
[5] Qian, Hao, and Daniel Andresen. "Extending mobile
device's battery life by offloading computation to cloud."
Proceedings of the Second ACM International Conference
on Mobile Software Engineering and Systems. IEEE Press,
2015.
[6] Claypool, Mark, and David Finkel. "The Effects of
Latency on Player Performance in Cloud-Based Games."
Network and Systems Support for Games (NetGames), 2014
13th Annual Workshop on. IEEE, 2014.
[7] Zhang, Wuyang, et al. "Towards Efficient Edge Cloud
Augmentation for Virtual Reality MMOGs." Proceedings of
the Second ACM/IEEE Symposium on Edge Computing.
ACM, 2017.
[8] Popescu, Diana Andreea, Noa Zilberman, and Andrew
William Moore. "Characterizing the Impact of Network
Latency on Cloud-Based Applications’ Performance"(2017)
[9] Good, Otavio. “How Google Translate Squeezes Deep
Learning onto a Phone.” Google AI Blog, Google, 29 July
2015,ai.googleblog.com/2015/07/how-google-translate-sque
ezes-deep.html.
[10] Franklin, Dustin. “NVIDIA® Jetson™ TX1
Supercomputer-on-Module Drives Next Wave of
Autonomous Machines.” NVIDIA Developer Blog,
NVIDIA, 5 Sept. 2018, devblogs.nvidia.com/NVIDIA-
jetson-tx1-supercomputer-on-module-drives-next-wave-of
-autonomous-machines/.
[11] McDonough, Tim. “Live from New York, It's
Snapdragon 820: Prepare for an Immersive Dive into
Mobile Experience.” Qualcomm, Qualcomm, 10 Mar. 2016,
www.qualcomm.com/news/onq/2015/11/10/live-new-york-i
ts-snapdragon-820-prepare-immersive-dive-mobile-experien
ce.

[12] Du, Shuyang, Madhulima Pandey, and Cuiqun Xing.
"Modeling Approaches for Time Series Forecasting and
Anomaly Detection."
[13] Yao, Huaxiu, et al. "Modeling Spatial-Temporal
Dynamics for Traffic Prediction." arXiv preprint
arXiv:1803.01254 (2018).
[14] Tran, Dat Thanh, et al. "Temporal Attention-
Augmented Bilinear Network for Financial Time-Series
Data Analysis." IEEE transactions on neural networks and
learning systems (2018).
[15] Ma, Lele, Shanhe Yi, and Qun Li. "Efficient Service
Handoff Across Edge Servers Via Docker Container
Migration." Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM, 2017.
[16] Rad, Babak Bashari, Harrison John Bhatti, and
Mohammad Ahmadi. "An Introduction to Docker and
Analysis of its Performance." International Journal of
Computer Science and Network Security (IJCSNS) 17.3
(2017): 228.
[17] Graham, B. The Intelligent Investor HarperCollins; Rev
Ed edition, 2003.
[18] Yudong, Zhang , and W. Lenan . "Stock market
prediction of S&P 500 via combination of improved BCO
approach and BP neural network." Expert Systems with
Applications 36.5(2009):8849-8854
.[19] Kumar, Jitendra, R. Goomer, and A. K. Singh. "Long
Short Term Memory Recurrent Neural Network
(LSTM-RNN) Based Workload Forecasting Model For
Cloud Datacenters." Procedia Computer Science
125(2018):676-682.
[20] Boateng, Richard . "Mobile phones and micro- trading
activities – conceptualizing the link." Info 13.5(2011):48-62.
[21] K. Hong et al., “Mobile fog: A programming model for
large-scale applications on the internet of things,” in MCC,
2013.
[22] Zhang, Wuyang, et al. "Towards efficient edge cloud
augmentation for virtual reality MMOGs." Proceedings of
the Second ACM/IEEE Symposium on Edge Computing.
ACM, 2017.
[23] Brockwell, P. J., & Davis, R. A. (1991). Time Series:
Theory and Methods (2nd ed.). New York: Springer-Verlag.
[24] NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/, date.
[25] Dodonov, Evgueni, Rodrigo Fernandes de Mello, and
Laurence Tianruo Yang. "A Network Evaluation for LAN,
MAN and WAN Grid Environments." International
Conference on Embedded and Ubiquitous Computing.
Springer, Berlin, Heidelberg, 2005.
[26] Gers, F. A., J. Schmidhuber, and F. Cummins.
"Learning to forget: continual prediction with LSTM."
Neural Computation 12.10(2000):2451-2471.
[27] Graves, Alex. Long Short-Term Memory. Supervised
Sequence Labelling with Recurrent Neural Networks. 2012

